Investigation of Mutation Schemes in Real-Parameter Genetic Algorithms
نویسندگان
چکیده
In this paper, we investigate the effect of five different mutation schemes for real-parameter genetic algorithms (RGAs). Based on extensive simulation studies, it is observed that a mutation clock implementation is computationally quick and also efficient in finding a solution close to the optimum on four different problems used in this study. Moreover, parametric studies on the polynomial mutation operator identify a working range of values of these parameters. This study signifies that the long-suggested mutation clock operator should be considered as a valuable mutation operator for RGAs.
منابع مشابه
Analysing mutation schemes for real-parameter genetic algorithms
Mutation is an important operator in genetic algorithms (GAs), as it ensures maintenance of diversity in evolving populations of GAs. Real-parameter GAs (RGAs) handle real-valued variables directly without going to a binary string representation of variables. Although RGAs were first suggested in early ‘90s, the mutation operator is still implemented variable-wise – in a manner that is independ...
متن کاملAnalyzing Mutation Schemes for Real-Parameter Genetic Algorithms
Mutation is an important operator in genetic algorithms (GAs), as it ensures maintenance of diversity in evolving populations of GAs. Real-parameter GAs (RGAs) handle real-valued variables directly without going to in a binary string representation of variables. Although RGAs were first suggested in early nineties, the mutation operator is still implemented variablewise and independently for ea...
متن کاملAdaptive mutation rate control schemes in genetic algorithms
Abstract The adaptation of mutation rate parameter values is important to allow the search process to optimize its performance during run time. In addition it frees the user of the need to make non-trivial decisions beforehand. Contrary to real vector coded genotypes, for discrete genotypes most users still prefer to use a fixed mutation rate. Here we propose two simple adaptive mutation rate c...
متن کاملCombination of Feature Selection and Learning Methods for IoT Data Fusion
In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...
متن کاملA multi-objective integrated production-allocation and distribution planning problem of a multi-echelon supply chain network: two parameter-tuned meta-heuristic algorithms
Supply chain management (SCM) is a subject that has found so much attention among different commercial and industrial organizations due to competing environment of products. Therefore, integration of constituent element of this chain is a great deal. This paper proposes a multi objective production-allocation and distribution planning problem (PADPP) in a multi echelon supply chain network. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012